二分查找

  • 二分查找框架

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    class Solution:
    def binary_search(self, nums: list, target: int):
    left, right = 0, ...
    while ...:
    mid = int(left + (right - left) / 2)
    if nums[mid] < target:
    left = ...
    elif nums[mid] > target:
    right = ...
    elif nums[mid] == target:
    ...
    return ...
  • 技巧:不要出现else,而是把所有情况用else if写清楚,这样可以清楚地展现所有细节

  • 寻找一个数(基本的二分搜索)

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    class Solution:
    def binary_search(self, nums: list, target: int):
    left, right = 0, len(nums) - 1
    while left <= right:
    mid = int(left + (right - left) / 2)
    if nums[mid] < target:
    left = mid + 1
    elif nums[mid] > target:
    right = mid - 1
    elif nums[mid] == target:
    return mid
    return -1
    • 思路:
      • 因为right赋值为len(nums)-1,所以相当于每次的搜索区间为左闭右闭区间,即[left, right]
      • 所以,while条件为left <= right,其中right最大为数组长度
      • 什么时候终止?终止条件为left = right + 1,即[right+1, right],这时候区间为空
      • 因为是闭区间,所以当mid不满足条件时,下个搜索位置就需要排除mid,即mid+1或mid-1
  • 寻找左侧边界的二分搜索

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    class Solution:
    def left_bound(self, nums: list, target: int):
    left, right = 0, len(nums) - 1
    while left <= right:
    mid = int(left + (right - left) / 2)
    if nums[mid] < target:
    left = mid + 1
    elif nums[mid] > target:
    right = mid - 1
    elif nums[mid] == target:
    right = mid - 1
    if left >= len(nums) or nums[left] != target:
    return -1
    return left
    • 思路:
      • 能够搜索左侧边界:关键在于,当nums[mid]=target时,不返回结果,而是收缩右侧边界,使得区间不断向左收缩,达到锁定左侧边界的目的
      • while终止条件是left=right+1,即[right+1, right]
      • 注意临界条件的判断,target比所有数都大的情况,left的下标超过数组长度,返回-1
  • 寻找右侧边界的二分搜索

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    class Solution:
    def right_bound(self, nums: list, target: int):
    left, right = 0, len(nums) - 1
    while left <= right:
    mid = int(left + (right - left) / 2)
    if nums[mid] < target:
    left = mid + 1
    elif nums[mid] > target:
    right = mid - 1
    elif nums[mid] == target:
    left = mid + 1
    if right < 0 or nums[right] != target:
    return -1
    return right
    • 思路:
    • 能够搜索左侧边界:关键在于,当nums[mid]=target时,不返回结果,而是收缩左侧边界,使得区间不断向右收缩,达到锁定右侧边界的目的
      • while终止条件是left=right+1,即[right+1, right]
      • 注意临界条件的判断,target比所有数都小的情况,right的下标小于0,返回-1