二分查找
二分查找框架
1
2
3
4
5
6
7
8
9
10
11
12class Solution:
def binary_search(self, nums: list, target: int):
left, right = 0, ...
while ...:
mid = int(left + (right - left) / 2)
if nums[mid] < target:
left = ...
elif nums[mid] > target:
right = ...
elif nums[mid] == target:
...
return ...技巧:不要出现else,而是把所有情况用else if写清楚,这样可以清楚地展现所有细节
寻找一个数(基本的二分搜索)
1
2
3
4
5
6
7
8
9
10
11
12class Solution:
def binary_search(self, nums: list, target: int):
left, right = 0, len(nums) - 1
while left <= right:
mid = int(left + (right - left) / 2)
if nums[mid] < target:
left = mid + 1
elif nums[mid] > target:
right = mid - 1
elif nums[mid] == target:
return mid
return -1- 思路:
- 因为right赋值为len(nums)-1,所以相当于每次的搜索区间为左闭右闭区间,即[left, right]
- 所以,while条件为left <= right,其中right最大为数组长度
- 什么时候终止?终止条件为left = right + 1,即[right+1, right],这时候区间为空
- 因为是闭区间,所以当mid不满足条件时,下个搜索位置就需要排除mid,即mid+1或mid-1
- 思路:
寻找左侧边界的二分搜索
1
2
3
4
5
6
7
8
9
10
11
12
13
14class Solution:
def left_bound(self, nums: list, target: int):
left, right = 0, len(nums) - 1
while left <= right:
mid = int(left + (right - left) / 2)
if nums[mid] < target:
left = mid + 1
elif nums[mid] > target:
right = mid - 1
elif nums[mid] == target:
right = mid - 1
if left >= len(nums) or nums[left] != target:
return -1
return left- 思路:
- 能够搜索左侧边界:关键在于,当nums[mid]=target时,不返回结果,而是收缩右侧边界,使得区间不断向左收缩,达到锁定左侧边界的目的
- while终止条件是left=right+1,即[right+1, right]
- 注意临界条件的判断,target比所有数都大的情况,left的下标超过数组长度,返回-1
- 思路:
寻找右侧边界的二分搜索
1
2
3
4
5
6
7
8
9
10
11
12
13
14class Solution:
def right_bound(self, nums: list, target: int):
left, right = 0, len(nums) - 1
while left <= right:
mid = int(left + (right - left) / 2)
if nums[mid] < target:
left = mid + 1
elif nums[mid] > target:
right = mid - 1
elif nums[mid] == target:
left = mid + 1
if right < 0 or nums[right] != target:
return -1
return right- 思路:
- 能够搜索左侧边界:关键在于,当nums[mid]=target时,不返回结果,而是收缩左侧边界,使得区间不断向右收缩,达到锁定右侧边界的目的
- while终止条件是left=right+1,即[right+1, right]
- 注意临界条件的判断,target比所有数都小的情况,right的下标小于0,返回-1